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Acousto-elasticity measurements in a sample of room-dry Berea sandstone

are conducted at various loading frequencies to explore the transition between

the quasi-static (f → 0) and dynamic (few kHz) nonlinear elastic re-

sponse. We carry out these measurements at multiple confining pressures and

perform a multivariate regression analysis to quantify the dependence of the

harmonic content on strain amplitude, frequency and pressure. The modu-

lus softening (equivalent to the harmonic at 0f) increases by a factor 2-3 over

3 orders of magnitude increase in frequency. Harmonics at 2f , 4f and 6f ex-

hibit similar behaviors. In contrast, the harmonic at 1f appears frequency

independent. This result corroborates previous studies showing that the non-

linear elasticity of rocks can be described with a minimum of two physical

mechanisms. This study provides quantitative data that describes the rate

dependency of nonlinear elasticity. These findings can be used to improve

theories relating the macroscopic elastic response to micro-structural features.

6Department of Civil Engineering,

Penn-State University, University Park, PA,

USA.
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1. Introduction

The main motivation of this study is to improve our understanding of nonlinear elastic

properties of rocks, in particular frequency (-time) and pressure dependences. In terms of

modeling, one wants to improve theoretical descriptions that relate nonlinear measures to

micro-structural properties of rocks [Guyer and Johnson, 2009]. Nonlinear elasticity is rel-

evant for a broad range of applications in geosciences, including earthquake slip processes,

strong ground motion [Beresnev and Wen, 1996; Field et al., 1997; Renaud et al., 2014;

Trifunac and Todorovska, 1996], liquefaction phenomenon [Aguirre and Irikura, 1997],

Earth tides [Hillers et al., 2015] and oil/gas exploration. Further, a better knowledge

of frequency dependence facilitates comparisons between observations made at different

scales, e.g., from the laboratory to the field scale.

A number of studies [Winkler and Liu, 1996; Winkler and McGowan, 2004] have charac-

terized nonlinear elasticity of rocks using acousto-elastic experiments. Such experiments

consists in measuring speed of sound with high frequency (HF) pulses across the sample

while it is gradually stressed uniaxially and/or hydrostatically at increasing levels. These

quasi-static acousto-elastic experiments are equivalent to zero-frequency measurements.

In dynamic acousto-elastic testing (DAET), the stepwise increases in pressure/stress are

replaced by a low frequency (LF) strain modulation [Renaud et al., 2011]. DAET is there-

fore a pump-probe scheme in which the HF elastic pulses probe the state of a mechanical

system set by the LF wave, the pump. For the pump P we often use the fundamental

compressional mode of the sample driven to strain amplitudes 10−7 ≤ εP < 10−5 (εP ≡ ε

hereafter) [Renaud et al., 2011]. The probe (p) is a HF pulse (of low strain amplitude,
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εp ' 10−7) that tests the state of the sample at all phases of the pump strain field, i.e., in

both compression and tension. From the response of the probe to the pump modulation,

a complete description of the rich nonlinear elastic properties of the sample is obtained,

e.g., hysteresis, tension/compression asymmetry, nonlinear elastic constants, providing

a more complete picture on the nonlinear phenomena than static experiments [Renaud

et al., 2009, 2010, 2011, 2013a, b, 2014; Moreschi et al., 2011; Trarieux et al., 2014; Rivière

et al., 2013; Rivière et al., 2015].

One objective of this study is to investigate the transition between quasi-static (fre-

quency fP → 0, fP ≡ f hereafter) and dynamic acousto-elasticity (f ' few kHz). To

explore such transition, the experimental setup is similar to quasi-static experimental se-

tups, except that the mechanical press will oscillate the sample sinusoidally at frequencies

ranging from 0.2 up to 250 Hz, instead of applying step-wise increase in stress. A second

objective is to quantify the effect of confining pressure on the dynamic nonlinear parame-

ters. This is especially important when nonlinear properties of rocks under natural in-situ

conditions are concerned.

The organization of the paper is as follows. In Section 2, we describe the apparatus, the

test protocol and the data analysis. In Section 3, we describe the experimental results,

before discussing them in Section 4.

2. Experiment

The test sample is a cylinder of room-dry Berea sandstone of length L = 8 cm and

diameter d = 4 cm (figure 1a). The experiments are conducted in an oil-confining triaxial

apparatus [Fortin et al., 2005]. The sample is radially enclosed in a rubber jacket in order
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to be separated from the oil confining medium. The apparatus has been developed and

calibrated to measure LF Young modulus and Poisson ratio from axial oscillations at low

strain amplitudes [Pimienta et al., 2015a, b]. The LF axial stress oscillations are exerted

using a PI piezo-electric actuator (figure 1a-b). The LF sample’s strain oscillations are

recorded using two pairs of axial and radial FCB 350 Ω strain gauges. HF longitudinal

wave velocity is measured from a pair of P-wave piezoelectric sensors glued radially on

the perimeter of the sample (figure 1a). We ensure that the ultrasonic time of flight t0

across the sample (for a longitudinal wave velocity c0 in Berea, t0 = d/c0 = 0.04/2700 '

15 µs, figure 1c) is much shorter than the pump period T = 1/f = 1/250 = 5 ms, even at

the largest pump frequency (250 Hz). This condition is required to make certain that the

strain induced by the pump changes very little during each ultrasonic propagation.

The signals measured by the strain gauges are recorded using a Catman system from

HBM inc. (LF device). The sampling rate is 50 Hz for f ≤ 2 Hz, 400 Hz for 2 < f ≤

20 Hz and 2.4 kHz for f > 20 Hz. The ultrasonic source signal is three periods of 500 kHz

broadcast. The ultrasonic detection is sampled at 50 MHz on a separate data acquisition

system (HF device). To synchronize the pump and the probe broadcasts, the HF device

simultaneously records the input signal of the piezoelectric actuator used for the pump

oscillations.

The measurement protocol involves the following steps. At time t = t0 = 0, the

ultrasonic source is turned on, sending 500 kHz pulses at a sequence of times tj, j =

1, 2, · · · . The time between successive pulses, ∆T , is chosen such that the coda received

in response to the jth pulse decays to zero before sending the (j + 1)th pulse. Due to
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the limited on-board memory of the acquisition card, we use different ∆T depending on

the pump frequency, ranging from 1 ms (at f = 250 Hz) up to 50 ms for f = 0.1 Hz. A

full acquisition always therefore consists of 3000 ultrasonic pulses, independent of pump

frequency. The piezoelectric actuator, at frequency f and amplitude A, is turned on after

the broadcast of a minimum of 10 ultrasonic pulses (figure 1b), to properly estimate the

speed of sound across the sample in the absence of pump oscillations. The subsequent HF

pulses are launched in the presence of pump oscillations.

We record such acquisitions for pump frequency f varying from 0.2 to 250 Hz, pump

strain amplitudes ε varying from 9× 10−7 to 2× 10−5 and confining pressures Pc varying

from 0.1 (ambient) to 30 MPa.

2.1. Data Analysis

The LF measurements rely on the stress-strain method [e.g., Batzle et al., 2006]. An

axial stress oscillation σax of a given frequency is applied, inducing axial εax and radial εrad

strain oscillations of the rock sample. Examples of typical stress-strain curves are reported

in Figure S1 of supplementary information. The pump strain amplitude ε is determined

by collecting the maximum axial strain reached during the oscillation. The LF elastic

properties can be deduced from linear regressions (i) between σax and εax to obtain Young

modulus E; and (ii) between εrad and εax to obtain Poisson ratio ν. Young modulus is

found to increase from about 25 GPa at ambient pressure to 40 GPa at Pc = 30 MPa,

while Poisson ratio increases from 0.1 to 0.14. Because the primary goal of the paper is

to focus on acoustic-elasticity and its frequency, amplitude and pressure dependences, no

further analysis on the elastic moduli is reported here.
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Each pulse s(t− tj) propagating during the pump oscillation is compared to a reference

pulse that crosses the sample before the piezoelectric actuator is turned on, e.g. s(t− t0).

The time between successive pulses, ∆T , is chosen to be incommensurate with T = 1/f

so that over time the ultrasonic broadcasts at times {tj} sample all phases of the pump

strain field.

The first step in analysis of s(t− tj) from the steady state time domain is to compare

it to the reference pulse s(t− t0) by computing the cross-correlation:

C(τ, tj) =

∫ ∞
0

s(t− t0)s(t+ τ − tj)dt (1)

to determine τmax(tj), the time τ at which the correlation function is maximum [Renaud

et al., 2009, 2010]. This time of flight shift can be converted into a relative velocity change

using:

∆c

c
(tj) = −τmax(tj)

t0
, (2)

where t0 is the time of flight of the reference pulse. An example of ∆c/c-curves (variations

over the course of one acquisition) is depicted in figure 2. In figure 2a, one can see the pump

oscillation applied to the sample. In this example, the oscillations start approximately

half a second after launching the ultrasonic pulses. As shown in figure 2b, the velocity

remains constant (i.e. ∆c
c

= 0) until the pump is turned on. As soon as the pump is on, the

velocity drops and start oscillating with the pump frequency f , as well as with multiples

of f . The velocity drop, or offset, corresponds to an elastic softening of the medium,

and can be considered as a zero frequency harmonic (0f). The three terms (offset, elastic

softening and 0f -component) will be used interchangeably throughout the document.

We perform a dedicated Fourier analysis analogous to a lock-in amplifier [Rivière et al.,
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2013; Rivière et al., 2015] to each ∆c/c-signal to extract the amplitude of the harmonics.

These amplitudes are referred to as ∆c
c
|nf with n = 0, 1, 2, .... It is worth noting that even

components (0f , 2f , 4f , 6f) for such pump-probe scheme are equivalent to odd harmonics

(fundamental at frequency f , third, fifth and seventh harmonics) in standard nonlinear

acoustic techniques [Buck et al., 1978; Van Den Abeele et al., 2000], i.e., when the probing

wave also acts as a pump. Similarly, the component at 1f here is equivalent to the second

harmonic in standard techniques.

3. Results

Figure 2c shows the instantaneous change in velocity (∆c
c

) as a function of the LF input

oscillations. These nonlinear signatures closely resemble the ones in Renaud et al. [2013b]

and Rivière et al. [2015] obtained at few kHz and ambient pressure. The signatures are

complex at low pressure with the presence of hysteresis and elastic softening, roughly

0.5%-drop in velocity, which corresponds to a 1%-drop in elastic modulus M (assuming a

constant density ρ, ∆M
M

= 2∆c
c
' 1% with M = ρc2). Elastic softening as well as hysteresis

becomes smaller and smaller with increasing pressure. At 30 MPa, the nonlinearity (offset

and hysteresis) approaches towards zero, the two curves overlapping almost completely

on the linear vertical plan (∆c
c

= 0). Finally, both the offset and hysteresis are larger at

200 Hz than at 0.2 Hz.

We study the dependence of harmonic amplitudes (∆c
c
|nf with n = 0, 1, 2, ...) as a

function of frequency, pressure and strain amplitude (figure 3) obtained through Fourier

analysis of each ∆c/c-signal. Figure 3A shows the frequency dependence at 3 confining

pressures and constant pump strain amplitude (ε ' 1.4×10−5). The harmonic content at
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0f , 2f , 4f and 6f (equivalent to odd harmonics in standard nonlinear techniques [Buck

c

et al., 1978; Van Den Abeele et al., 2000]) increases by a factor 2 or 3 over three orders of 

magnitude in frequency, whereas ∆c |1f (equivalent to the second harmonic in

standard nonlinear techniques) seems to be rather invariant. Components at 3f and 5f are

below the noise level. All harmonics are decreasing with increasing confining pressure. In

particular, components at 4f and 6f become progressively unmeasurable with increasing

pressure.

In figure 3B, we focus on the pressure dependence of the first three  harmonics

(n = 0, 1, 2) at two extreme frequencies (f = 0.2 and 200 Hz). The nonlinearity decreases

by more than an order of magnitude when pressure increases from 1 to 30 MPa, following

an approximate exponential decrease. At 30 MPa, the harmonic amplitudes still persist 

, suggesting that small nonlinearity might still be present at such pressures

and potentially measurable if one further reduces noise level of the experimental setup.

In addition, as seen in figure 3A, the nonlinearity is larger at 200 Hz than at 0.2 Hz for

components at 0f and 2f , whereas it is similar for the component at 1f .

Figure 3C shows the strain dependence of the harmonic amplitudes at two extreme

frequencies (0.2 and 200 Hz) and ambient pressure. Data from Rivière et al. [2015] ob-

tained at f =4500 Hz and ambient pressure are also presented for comparison. The strain

dependence found at 0.2 and 200 Hz is similar to that previously found at 4500 Hz

[Rivière et al., 2013; Rivière et al., 2015].

The component at 0f (elastic softening) exhibits a power-law behavior ranging between

1 (linear) and 2 (quadratic). The component ∆c
c
|1f evolves linearly with strain. As for
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∆c
c
|2f , the power-law behavior is not constant over the strain range considered. It evolves

progressively from a slope larger than 1 at lower strains to a slope less than 1 at higher

strains. Finally, one sees higher harmonics at 4 and 6f emerging from noise at large strains.

The larger the frequency, the lower the strain at which they emerge: 3 microstrains at

4500 Hz, 6 microstrains at 200 Hz, 11 microstrains at 0.2 Hz.

We perform a multivariate regression analysis to quantify the dependence of the har-

monic amplitudes on strain, frequency and confining pressure and highlight main differ-

ences among them. To this end, we use a simple linear model of log
(

∆c
c
|nf
)
n = 0, 1, 2

with variables P , log (f) and log (ε). In developing the regression model, in addition to

the data presented above (thereafter called ENS data), we also include the set of data

collected at f =4500 Hz [Rivière et al., 2013; Rivière et al., 2015] (thereafter called LANL

data and shown in figure 3C). This dataset was collected on a different sample taken from

the same block of rock as the one used for ENS measurements. The details of LANL setup

is described in [Rivi`ere et al., 2013] and [Rivi`ere et al., 2015]. The LANL dataset was taken at

ambient pressure and room-dry conditions. The full dataset is comprised of 267

measurements corresponding to different combinations of {Frequency, Pressure, Strain}.

The multivariate regression analysis is most effective when we start with reasonable as-

sumptions concerning dependence of the predicted variable (log
(

∆c
c
|nf
)
) on the predictors

(f , P and ε). The experimental observations shown in figure 3A suggests that a power

law relation between harmonic amplitudes and frequency is appropriate:

∆c

c
|nf = Φ1f

µ. (3)
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Applying a log transformation to this equation, we obtain the following linear relation

between log
(

∆c
c
|nf
)

and log(f):

log

(
∆c

c
|nf
)

= µ log (f) + log(Φ1). (4)

For pressure, figure 3B suggests that the nonlinearity decreases exponentially with con-

fining pressure:

∆c

c
|nf = Φ2e

− P
P0 , (5)

where P0 represents a characteristic pressure, which might differ for the different har-

monics. Applying a log transformation to this equation yields to the following linear

relation:

log

(
∆c

c
|nf
)

= − 1

P0 ln(10)
P + log(Φ2), (6)

Finally, power-law relations best describe the strain dependence ([Scalerandi et al., 2015;

Bruno et al., 2009; Rivière et al., 2015]), as observed in figure 3C:

∆c

c
|nf = Φ3ε

ν , (7)

or equivalently:

log

(
∆c

c
|nf
)

= ν log (ε) + log(Φ3), (8)

Using equations 4, 6 and 8, our linear multivariate model will therefore be:

log

(
∆c

c
|nf
)

= µ log (f)− 1

P0 ln(10)
P + ν log (ε) + Cte. (9)

The linear regression model when fitted to ENS data yields the adjusted coefficients

of determination r2 of 0.9154, 0.9670 and 0.9137 for predicting log
(

∆c
c
|nf
)

for n = 0,

n = 1 and n = 2, respectively. Coefficients are displayed in table 1. Adding the LANL
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dataset slightly changes the values of the coefficients of determination r2 (0.9153, 0.9650

and 0.9111) and regression (coefficients in parentheses in table 1). Regression results

displayed in figure 3 show that these simple models for pressure, strain and frequency

dependences provide an overall appropriate fit for the dataset.

From table 1, we see that the dependence in frequency for n = 1 (0.0140) is an order of

magnitude lower than for n = 0 (0.1575) and n = 2 (0.1174), which confirms observations

made in figure 3A (frequency-dependence for n = 0, 2 ; frequency-independence for n = 1).

Characteristic pressures for the three harmonics are found to be about 7.7, 13.4 and

10.7 MPa for n = 0, 1 and 2 respectively. For strain dependence, one sees that the

coefficients for n = 1 is very close to one, as found for various other samples in Rivière

et al. [2015]. For the offset (n = 0), ν is found larger than 1 (1.27 in table 1), which

is consistent with former results (Rivière et al. [2013]; Rivière et al. [2015]) where the

dependence evolves from quadratic (ν = 2) at low strain to linear at large strains (ν = 1).

For the curvature (n = 2), ν is found lower than 1 (0.85 in table 1), which is again

consistent with Rivière et al. [2015]) for strains larger than a microstrain.

4. Discussion

4.1. Frequency (strain-rate) dependence

The increase in nonlinearity with frequency (figure 3A) is consistent with first obser-

vations made with resonance and quasi-static methods [TenCate and Shankland , 1996;

TenCate, 2011]. A previous study [Rivière et al., 2015] also suggested that the amplitude

dependences of a set of disparate rocks could be explained by a minimum of two differ-

ent nonlinear mechanisms, one related to the 1f -component, the second one related to
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components at 0f, 2f, 4f and 6f. Our results regarding frequency dependence also confirm 

thisseparation in the two mechanisms. The first one, controlling the harmonic at 1f, appears

to be frequency independent, whereas the second one, controlling the harmonics at 0f

and 2f depends on frequency and/or strain-rate amplitude, i.e., quickly  fast the sample is

brought from one state to another.

We observe in figure 2c – as well as in previous references, e.g. Renaud et al. [2013b];

Rivi`ere et al. [2015] – that nonlinear signatures do not exhibit abrupt jumps at

extreme strains, i.e., the hysteresis in stress-strain diagrams does not exhibit any cusps.

This observation is in contradiction with numerous quasi-static observations [TenCate,

2011; Guyer et al., 1997]. This discrepancy is not fully understood, but we believe that the

cusps observed in quasi-static experiments arise due to the combined effects of (i) a lack of

precision in measuring small stress and strain with standard mechanical test machines and

(ii) the triangular protocols used to perform such tests, implying an instantaneous change

in strain-rate at each extrema. In contrast, our setup involves a sinusoidal protocol

(sinusoidal pump at frequency f), and is made of an additional ultrasonic probe that

enables the detection of very fine changes in elasticity. Phenomenological models based on

a Presaich-Mayergoyz distribution of hysterons [McCall and Guyer , 1994; Van Den Abeele

et al., 1997] lead to a stress-strain relation which depends on the sign of the strain rate,

leading to cusps in the stress-strain diagram. Other physical models based on friction

and/or adhesion processes [Lawn and Marshall , 1998; Nihei et al., 2000; Aleshin and Van

Den Abeele, 2007; Tutuncu et al., 1998; Aleshin and Van Den Abeele, 2007] also lead to

cusps in the stress-strain curves. Our results exhibiting (i) no jump in modulus/velocity
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versus strain diagrams and (ii) an increase in nonlinearity with frequency suggest that

models with rate/time dependencies better describe nonlinear elastic phenomena in rocks.

Models found in Vakhnenko et al. [2005]; Gliozzi and Scalerandi [2014]; Pecorari [2015];

Gusev and Tournat [2005]; Favrie et al. [2015] include (or lead to) such rate-dependence.

4.2. Pressure dependence

The exponential model chosen in equation 5 seems appropriate to describe the pres-

sure dependence of nonlinearity (figure 3B). The exponential pressure dependence is also

observed in the literature for other physical properties like resistivity [Brace et al., 1968;

Kaselow and Shapiro, 2004], compressibility [Zimmerman et al., 1986], permeability [Brace

et al., 1968; Ougier-Simonin et al., 2011; Wang et al., 2013] and wavespeeds [Sayers ,

2002; Kaselow and Shapiro, 2004; Wang et al., 2013], with similar characteristic pres-

sures (∼10 MPa, as seen in Table 1). The exponential pressure dependence is generally

attributed to crack closure leading to a reduction of pore space connectivity. Observing

similar dependences in figure 3B suggests that crack closure is the main source of nonlin-

earity within this Berea sample. It is worth noting that characteristic pressures are of

the same order of magnitude for all nonlinear components (∼10 MPa). This could indi-

cate that the two aforementioned phenomena (one related to 1f , the other to 0f, 2f, ...)

are both related to crack closure. Although the underlying microstructural mechanisms

remain unknown, adhesion forces at grain boundaries are often cited as a possible source

of nonlinearity [Lebedev and Ostrovsky , 2014]. In particular, the low-amplitude dynamic

shaking would disturb the surface forces leading to a transient elastic weakening (0f -
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component). These adhesion effects would become negligible as confining pressure is

increased and cracks closed.

It is also worth noting that wavespeed (c0) versus pressure (Pc) measurements men-

tioned above [Sayers , 2002; Kaselow and Shapiro, 2004; Wang et al., 2013] are directly

related to nonlinear properties since the derivative dc0
dPc

is a quasi-static equivalent to

the 1f -component, as measured in quasi-static acousto-elasticity [Winkler and Liu, 1996;

Winkler and McGowan, 2004]. From our dataset, we can deduce c0 = d/t0 at all pressures

from the reference waveforms (before any oscillations are applied), where t0 is a reference

time of flight as defined in equation 2. We find that the increase in c0 with pressure

can be fitted with a exponential function (figure S2 of supplemental material) with a

characteristic pressure 6.9 MPa similar to the ones found in table 1. Since d
dx

(ex) = ex,

nonlinearity deduced from this quasi-static measurement also evolves as a exponential,

which is consistent with the exponential decrease of the 1f -component.

4.3. Amplitude dependence

Small arrows in figure 3C indicate that strain dependence is not constant over the entire

strain range, especially for the 2f -component. One also sees that this change in scaling

arise at strains where higher harmonics (4f - 6f) emerge from the noise level, which

suggests that both effects are related. The physical mechanism behind this phenomena

is still unclear. It might arise from clapping phenomena of the weak contacts within

microstructure, as observed in granular assemblies of glass beads [Tournat et al., 2008],

leading to an energy transfer from 0f and 2f -components to higher harmonics (4f and
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6f). Further at higher pressure (see figure S3 of supplementary material), neither changes

in strain dependence nor higher harmonics are observed, due to progressive crack locking

and closure with pressure. Finally, and as previously observed in Rivière et al. [2015], the

change in dependence is only present for 0f and 2f components (i.e. not for 1f), indicating

that the origin of nonlinear elastic phenomena arise from two main mechanisms.

4.4. At larger scales

The relative small change in response (factor 2 or 3 over 3 orders of magnitude in

frequency) suggests that phenomena observed at the laboratory scale with acoustic ex-

periments (kHz range) are likely to occur in the Earth at seismic frequencies. For instance,

a previous in-situ study [Renaud et al., 2014] conducted at 30 Hz in natural sandy silt

exhibited a 1%-drop in velocity (i.e. 2%-drop in elastic modulus) at 30 microstrains. Un-

like here, the component at 1f was larger than the 0f -component, leading up to −6%

in elastic modulus during dilation phases. On the other hand, increasing pressure with

depth (' 25 MPa/km) is expected to reduce such nonlinear effects, as seen in figure 3B

where nonlinearity drops by an order of magnitude over the pressure range [0 - 30 MPa].

Additional data would be needed to see if nonlinearity keeps dropping at larger pres-

sures (Pc > 30 MPa) or if it reaches a plateau. Nonetheless, nonlinearity is generally

orders of magnitude larger in unconsolidated materials [Brunet et al., 2008; Renaud et al.,

2014] than in intact rocks. Further, the presence of large fluid pressure at depth can

maintain large nonlinear effects by lowering effective stresses. Therefore, we argue that

nonlinearity (and the softening phenomenon in particular) may be present in the Earth’s

crust, particularly near fault zones where highly cracked rocks/unconsolidated gouge is
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present and within sediment basins where trapped waves lead to strong ground shaking.

Finally,  this (nonlinear) elastic softening leads to liquefaction phe-

nomena [Frankel et al., 2002; Zeghal and Elgamal , 1994; Zeghal et al., 1995], when pore

pressure within saturated soils increases due to strong ground motion, leading to large

drops in effective stresses.

5. Conclusions

This study aims at characterizing the frequency and pressure dependences of nonlinear

elasticity in a sample of room-dry Berea sandstone. As previously observed with quasi-

static tests and resonance techniques [TenCate, 2011], we find that nonlinearity increases

with frequency. Nonlinearity increases by a factor 2 or 3 over 3 orders of magnitude

in frequency (0.2 to 200 Hz). In addition, we find that not all nonlinear components

increase with frequency: only the components at 0f , 2f , 4f , 6f do so. In comparison,

the component at 1f appears rather frequency independent. [Note that the components

at 0f , 2f , 4f and 6f for such pump-probe scheme are equivalent to odd harmonics in

standard nonlinear acoustic techniques (when the probing wave also acts as a pump),

whereas the component at 1f is equivalent to the second harmonic]. This result indicates

that nonlinear elasticity in rocks does depend on the strain-rate, and not only on the

sign of strain-rate as described by previous nonlinear elastic theories [McCall and Guyer ,

1994]. This result also confirms that nonlinear elastic components can be divided into

two categories [Rivière et al., 2015], likely arising from two main mechanisms; one related

to the component at 1f , the other related to the components at 0f , 2f , 4f , 6f , etc.

In addition, we find that all nonlinear components decrease exponentially with confining
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pressures, with characteristic pressures around 10 MPa for this room-dry Berea sample

(figure 3B, table 1).

The relative small change in nonlinear response with frequency (factor 2 or 3 over 3 or-

ders of magnitude in frequency) suggests that phenomena observed at the laboratory scale

with acoustic experiments (kHz range) are likely to occur in the Earth at seismic frequen-

cies. In particular, the component at 0f corresponds to a transient elastic softening of the

medium during small (micro)-strain dynamic perturbations. Such transient softening has

indeed been observed in small scale field experiments [Johnson et al., 2009; Renaud et al.,

2014] and in the upper crust following earthquakes (e.g. [Rubinstein et al., 2007; Rubin-

stein and Beroza, 2005; Wu et al., 2009; Rubinstein, 2011]). It has also been observed due

to Earth tidal oscillations (implying strain lower than 0.1 microstrain) by Hillers et al.

[2015].

Experiments with more (diverse) rock samples, and under more diverse conditions of

temperature, humidity and saturation will be carried out in future work to further char-

acterize the link between nonlinear elasticity and rock microstructure, with the goal of de-

veloping a unified physics-based theory, as well as improving our interpretation of crustal’s

scale observations.
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Table 1. Coefficients found from the multivariate regression analysis when considering

ENS data only, based on equation 9. Values in parentheses correspond to coefficients found

when considering both ENS and LANL data (taken at 4500 Hz and ambient pressure).

The adjusted coefficients of determination r2 are also provided for both cases, showing

the overall appropriate fit.

Coefficient n = 0 n = 1 n = 2

Const. 2.8297 (3.3152) 1.6070 (1.3584) 0.0453 (0.4330)

Strain ε ν 1.1675 (1.2670) 1.0071 (0.9610) 0.7735 (0.8512)

Frequency f µ 0.1575 (0.1754) 0.0140 (0.0422) 0.1174 (0.1180)

Pressure P P0 7.6730 (7.6730) 13.4042 (13.4042) 10.7499 (10.7499)

r2 0.9154 (0.9153) 0.9670 (0.9650) 0.9137 (0.9111)
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Figure 1. Experimental setup and protocol. (a) The sample is placed inside a pressure vessel where the confining
pressure P is increased from ambient up to 30 MPa. The piezoelectric actuator on top oscillates the sample around a
constant deviatoric stress of 0.5 MPa at frequencies ranging from 0.2 up to 250 kHz and strain amplitudes roughly from 1
to 10 microstrains. Axial and radial strains (respectively stresses) are measured with strain gauges placed on the sample
(respectively on the aluminium base). One pair of piezoceramics is glued on the perimeter of the sample to send/receive
longitudinal ultrasonic waves. They launch high frequency pulses centered at 500 kHz to probe the sample at a given strain
level established by the oscillations. (b) Typical oscillations protocol applied to the sample (here at 5 Hz). No oscillations
are applied during 0.5 s to serve as a reference for ultrasonic waveforms. (c) Typical received ultrasonic waveform. The
inset (blue) shows that waveforms received during oscillations are slightly delayed (and of lower amplitude) than reference
waveforms.
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Figure 2. Change in ultrasonic velocity during pump oscillations. (a) Input oscillations of the piezoelectric actuator.
Positive (negative) values corresponds to the dilation (compression) phase. In this example, the oscillation frequency
is 5 Hz and the output axial strain amplitude roughly 10 microstrains. (b) Relative change in ultrasonic velocity (see
Eq. 2) induced by pump oscillations and varying at frequencies nf with n = 0, 1, 2, .... The steady-state regime is further
decomposed applying Fourier analysis. The component at 0f corresponds to an elastic softening of the medium. (c)
Instantaneous velocity change during steady-state at two extreme frequencies (0.2 Hz and 200 Hz) and different confining
pressures. One can see a larger change in velocity (i.e. larger nonlinearity) at high frequencies and low confining pressures.
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Figure 3. Frequency, Pressure and Strain dependences of the harmonic amplitudes. Note that the harmonic
amplitudes ∆c

c
|nf,n≥1 are positive by definition (result of Fourier analysis). On the other hand, because the component at

0f corresponds to an elastic softening of the medium (therefore negative), −∆c
c
|0f is actually represented in the log-plot.

(A) Pump frequency dependence of the harmonic amplitudes at 3 confining pressures and constant strain amplitude (ε '
14 microstrains). One sees an increase in nonlinearity by a factor 2-3 over three orders of magnitude in frequency for all
harmonics but the component at 1f , and at all pressures. Result of the multivariate regression is also shown at ambient
pressure. (B) Pressure dependence at 0.2 and 200 Hz and constant strain amplitude (ε ' 14 microstrains). Result of
the multivariate regression for data at 200 Hz shows the approximate exponential decrease of nonlinearity with confining
pressure. (C) Strain dependence at 0.2 Hz, 200 Hz (ENS data) and 4500 Hz (LANL data) at ambient pressure. Result
of the multivariate regression for data at 200 Hz show the power-law dependence of nonlinearity with strain. The arrows
show changes in dependence occurring at strains where higher harmonics at 4 and 6f emerge from noise [vertical dashed
line]. Strain dependence at larger pressures are presented in figure S3 of supplementary information.
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